

GLOBAL WIND ENERGY SHIPPING AND LOGISTICS

PHD RESEARCH PROJECT 8TH REFERENCE GROUP MEETING

MARCH 29, 2017, DHL, COPENHAGEN

Proprietary, private, and confidential

Today's program

12:00-12:45 **Working lunch**

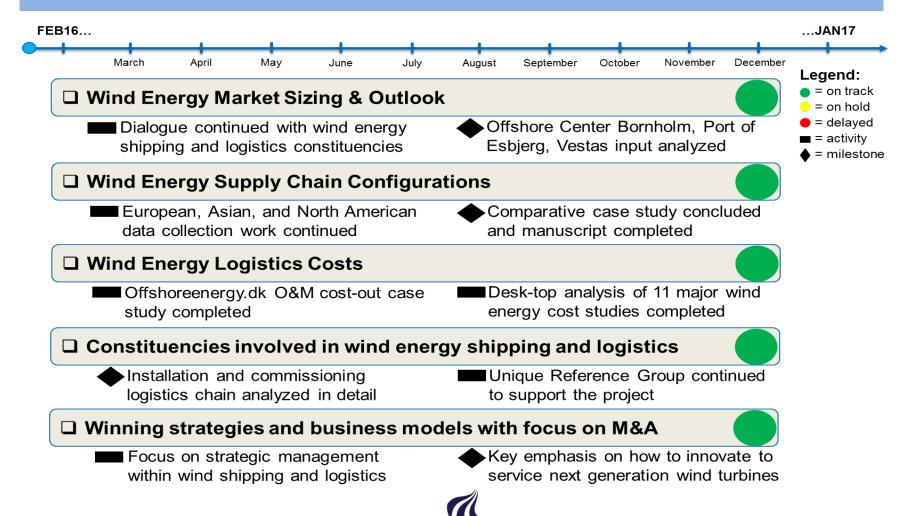
12:45-14:15 **Meeting part I**

14:15-15:50 Coffee and meeting (II)

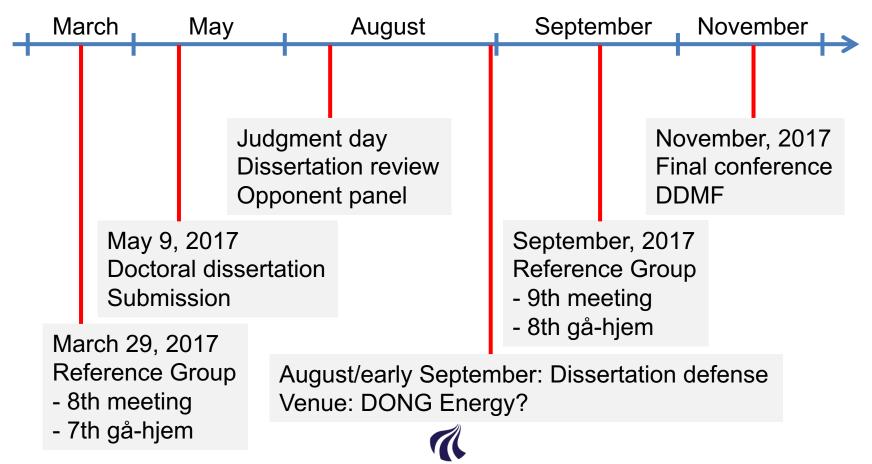
15:50-16:00 Ready for "gå-hjem"

16:00-18:00 "Gå-hjem" meeting

Working lunch



Agenda – Reference Group


- 1. Meeting opening, welcome, and agenda review during working lunch
- 2. New / changed Reference Group member organizations / changed participants short introduction by new participants
- 3. Short review of scoping of PhD research project efforts from first meetings
- 4. Detailed review of the readiness of the global wind energy supply chain with a focus on shipping, logistics, and SCM
- 5. Key activities since last meeting. Focus on:
 - 1. The "speed boats" from the PhD "mother vessel"
 - 2. Government relations and tailor-made grants (Horizon 2020)
 - 3. Concurrent dissemination of research results and findings
- 6. Update on academic progress, 11-month plan, and plans to finalize the project
- Wrap-up, preparation for after work / "gå-hjem" meeting, and date/venue for next meeting

From the Year 4 industry report

DENMARK

2017 project milestones

Brief introductions

(organizations, participants)

Intro to new/changed Reference Group participants

- Quick personal background
- Brief overview of the activities of your organization
- Expectations from participation in the Reference Group and research project

Today's program

12:00-12:45 **Working lunch**

12:45-14:15 **Meeting part I**

14:15-15:50 Coffee and meeting (II)

15:50-16:00 Ready for "gå-hjem"

16:00-18:00 "Gå-hjem" meeting

Recap of August, 2016 meeting

08M part 2

Last meeting: Paper on O&M

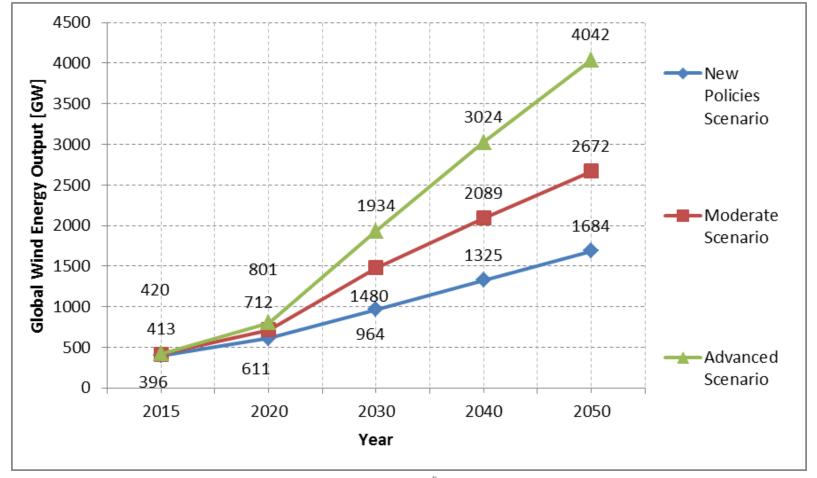
Practical action research case work:

OEDK CR(I)F Group 4 O&M Logistics

Initiative name	Cost-out initiative description	Idea agreed		
Lean in O&M logistics	Eliminate waste from quay side up to in	First series of meetings		
	within the offshore wind farm site			
Working 24/7	Adding a night shift to present daytime	First series of meetings		
	operations (12/7) during maintenance	(and the focus of this		
	campaigns	research)		
Asset sharing	The sharing of vessels and helicopters	Second series of meetings		
	between different offshore wind projects			
Parts, tools, and	Optimization of advance packing of	Second series of meetings		
consumables pre-	parts and tools including location of			
planning	tools			
O&M logistics vision	Vision for the future of O&M logistics in	Second series of meetings		
2025	both near shore and far shore context			

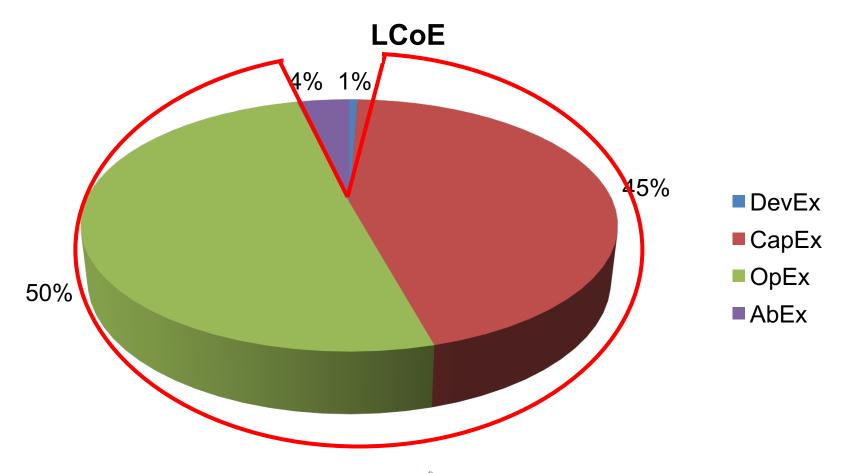
Desktop study of 11 LCoE reports

Study Name	Year	Study Examines	O&M to OpEx	Currency	Simulated or Actual Cost Reduction	WTG Cap? [MW]	Farm Cap? [MW]	Life-cycle phases
Megawind	2015	OpEx	1	EUR		Open	Open	All
Douglas-Westwood	2015	OpEx	1	EUR	Simulated	N/A	N/A	All
BVG UK SC	2014	OpEx	1	GBP	Simulated	6	500	No de-comms
P + FG Germany cost reduction	2013	OpEx	1	EUR	Simulated			
Scottish Enterprises GL Garrad Hassan	2013	O&M	2	GBP		6	500	
TCE UK cost reduction	2012	OpEx	1	GBP	Simulated	4, 6	500	
Deloitte DK study	2011	N/A	N/A	N/A				Only CapEx
UK RAB 2010	2010	OpEx	1	GBP				
EWEA2009	2009	O&M++	1.5	EUR	Simulated	2	160-20	
KF Vattenfall	2008	O&M++	1.5	GBP	Actual	3	90	
ODE UK study	2007	O&M	1.5	GBP	Simulated	3,6	108	



Supply chain readiness - shipping/logistics/SCM focus

25-30% of 2050 electricity: Wind


Wind farm life-cycle

AALBORG UNIVERSITY

DENMARK

Life-cycle phases \$\$\$: LCoE

Life-cycles = logistical chains

Lead firms in the supply chain

Activity	Project management and financial planning
Sub activity	Wind farm design
Supply chain lead firm	Utilities
Lead firm examples	DONG Energy, RWE Innogy, Vattenfall, Iberdrola, Statoil, Statkraft, Guodian Longyuan, China Guangdong Nuclear, Daneng, KEPCO, Masdar

- Contract structure
- Task allocation
- Supply chain set-up

- Shipping/logistics scope
- Procurement structure
- Execution lead

Lead supply chain firm model

Offshore Wind Adaption

Lead

Operator / Developer

Tier 1a: DONG Energy Wind Power

Tier 1b: Vattenfall, E.On, RWE, Longyuan

🕋 Tier 2: Statoil, EnBW, Iberdrola/SPR, Shell, CTG

Tier 3: CIP, WpD, Enbridge (Investors)

Tier 4: GCube, CODAN, AOn (Insurers)

OEM

+BOP OEMs WTG Leader: SWP (Now with Gamesa and Adwen)

WTG Followers:
MHI Vestas,
Senvion
(used to be REpower)

WTG Emergents:
GE / Alstom
Asian players

EPC

Van Oord (Ballast Nedam/Bilfinger), DEME/GeoSea (Hochtief/COSCO), Per Aarsleff, Fluor Corp., Bechtel, CCCC/ZPMC

Contractor

Development: Financing & Design

Marine Support: Ports & Logistics

Misc. Support: Various Services

Financial investment decision

Development & consent (D&C chain)

Country scope (grid, sub-stations, cables)

Surveys

Before award / auction

After award, before / after FID

Different kinds of vessels and logistical operations:

- Survey and maintenance vessels
- Geophysical survey vessels
- Hydrographic survey vessels
- Ornithological and mammal surveying vessels

...And equipment like remotely operated vehicles (ROVs)

CapEx = $I&C_{(1)}$

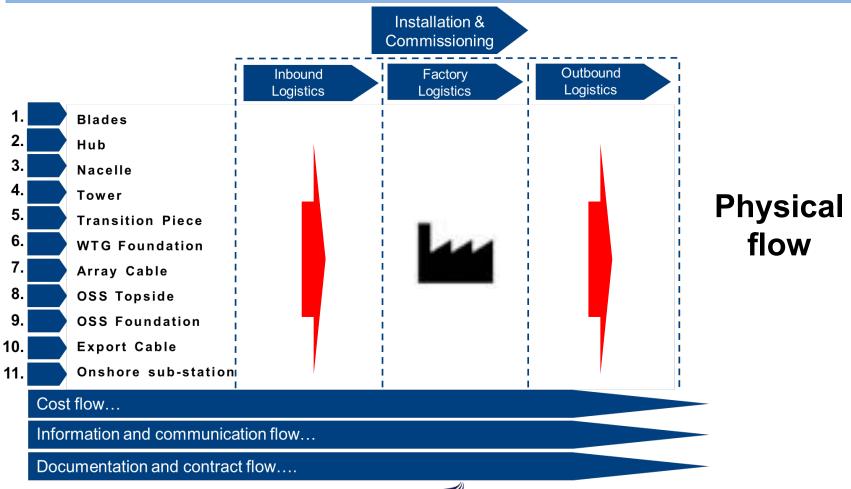
Installation & commissioning (I&C chain)							
Inbound			Outbound				
WTG inbound		BOP inbound					
WTG	Foundations	Cables	Sub-station	Construction/installation/commissioning			
,,,,,	Toundations	Cables	Sub-station	Construction/installation/commissioning			
Assembly	Assembly	Manufacturing	Assembly	Installation landside			
	11 1111 1 1	2 3332 233		8			

+ factory logistics

CapEx = $I&C_{(2)}$

Installation & commissioning (
Inbound							
WTG inbound BOP inbound							
WTG	Foundations	Cables	Sub-station				
Assembly	Assembly	Manufacturing	Assembly				
	Modules production		Modules production				

+ factory logistics


CapEx = $I\&C_{(3)}$

I&C chain) **Outbound** Construction/installation/commissioning Installation landside **Installation BOP** Installation WTG

+ factory logistics

Engineer, build, and/or buy

O&M ≠ OpEx

- O&M accounts for ~50% of OpEx
- OpEx can very by a factor of 9,5x
- Correct up-front OpEx calculation can "make or break" overall offshore wind farm project profitability

Operations & Maintenance (O&M chain)

Preventive maintenance

Unscheduled maintenance

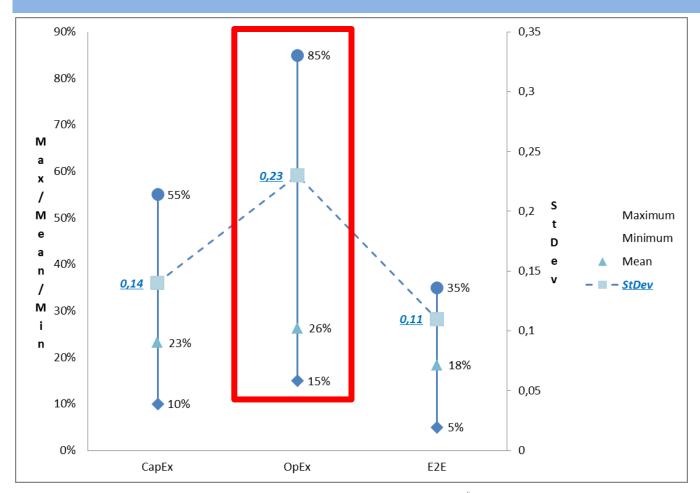
Contingency maintenance

Site abandonment

De-commissioning (**De-comms chain**)

WTG de-commissioning
BOP de-commissioning
Site restoration

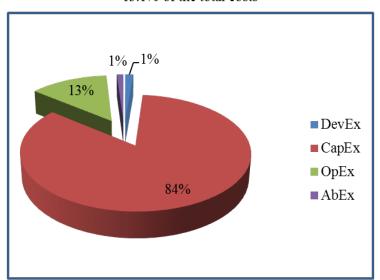
Not an easy task:


- Especially for offshore wind
- Global first for offshore wind: Vattenfall (Yttre Stengrund)
- World's first ever offshore wind farm:
 DONG Energy Wind Power (Vindeby)

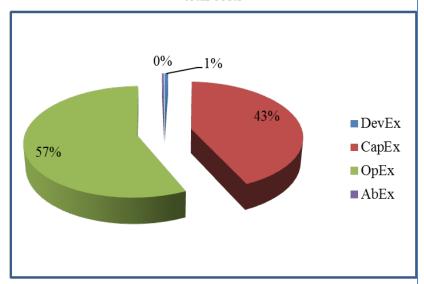
Other issues:

- End-of-service-life extensions
- How to refurbish / reuse different parts and materials
- Supply chain sustainability

In reality, costs fluctuate


O&M had largest spread in answers provided

- Logistics
 as a
 percentage
 of...
- OpEx!!!
- ...O&M?



Latest paper: OpEx share of LCoE

Lowest OpEx cost per MW per year and lowest CapEx cost per MW implying a near-shore offshore wind farm with a land-based O&M strategy. Discounted OpEx makes up

Highest OpEx cost per MW per year and highest CapEx cost per MW implying a far offshore wind farm with a sea-based O&M strategy. Discounted OpEx now makes up 56.5% of the total costs

Key modelling assumptions include WACC of 10% (The Crown Estate 2012), OpEx and AbEx numbers have been discounted according to the project operating life assumptions, lowest OpEx example includes a "normal" O&M life-cycle phase of 20 years' operating life whereas highest OpEx example includes a "prolonged" O&M life-cycle phase of 25 years' operating life, and AEP/DevEx/AbEx numbers for the model simulated based on Megavind (2015). Eight (all from 2010 or later) of eleven studies (Megavind 2015; Douglas-Westwood 2015; BVG Associates 2014; Prognos and Fichtner Group 2013; GL Garrad Hassan 2013; The Crown Estate 2012; Deloitte 2011; BVG Associates 2010) in our analysis are included in thse numbers

Geographical scope: Expansion

OWF site visits

Name of offshore wind farm visited	Country	Life-cycle focus	Timing of offshore visits
Anholt OWF	Denmark	Installation & Commissioning	April, 2013 and September, 2015
Middelgrunden OWF	Denmark	Operations & Maintenance	March, 2015
Horns Reef I OWF	Denmark	Operations & Maintenance	June, 2015
Longyuan Rudong Intertidal Trial OWF	China	I&C and O&M	July and October, 2016

PhD project travels:

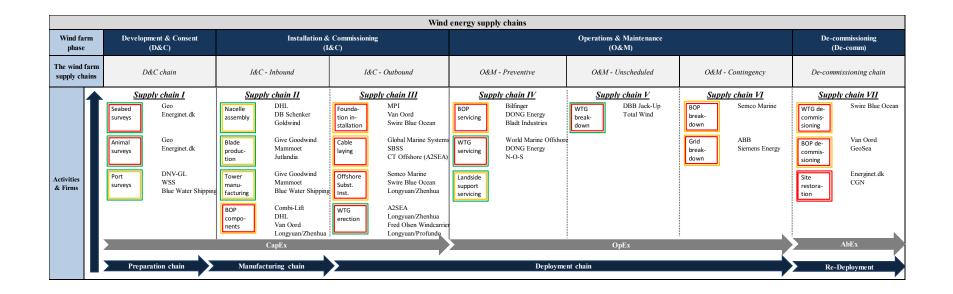
China: 5 visits, 2 months in-country

Associate researcher China stay: 2 months

South Korea: 2 visits

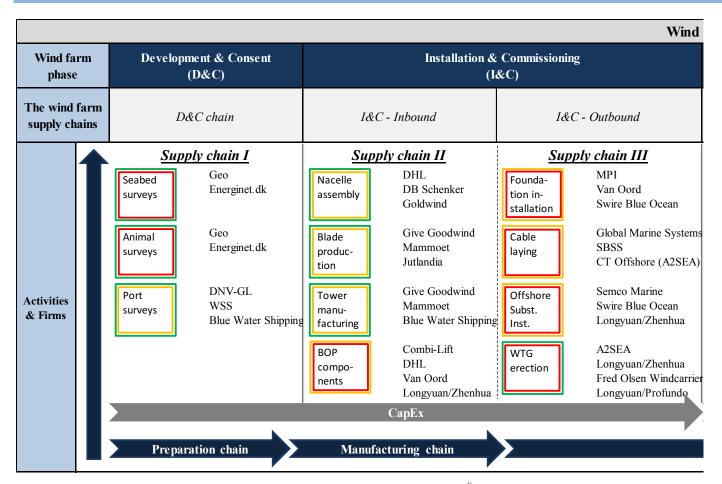
Singapore: 3 visits

North America: 6 visits

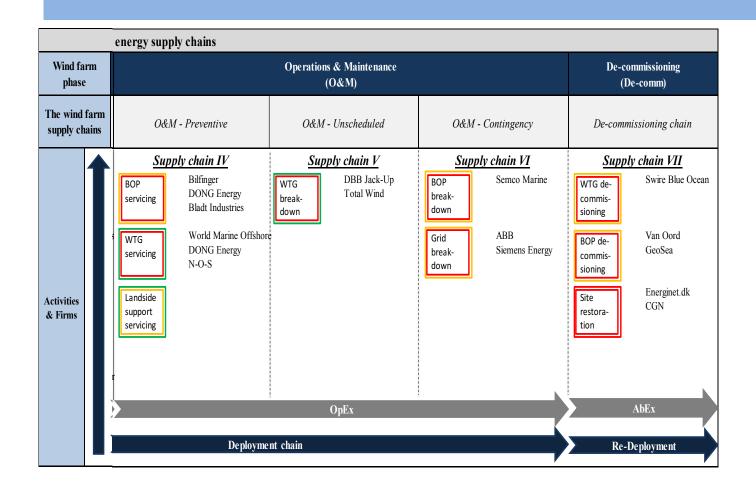

The market in China

The national Offshore Wind Power Development and Construction Program (2014-2016):

Province	Number of projects	Capacity (MW)
Tianjin	1	90
Hebei	5	1.300
Liaoning	2	600
Jiangsu	18	3.490
Zhejiang	5	900
Fujian	7	2.100
Guangdong	5	1.700
Hainan	1	350
Total	44	10.530


Logistical chains: Readiness?

Source: Poulsen & Lema. 2017


D&C, I&C view

- Europe
- Asia

O&M, De-comms

- Europe
- Asia

Readiness traffic light: I&C

	0	1	2	3
Supply chain #II - Inbound to manufacturing				
Nacelle				EU, PRC
Tower				EU, PRC
Blades/hub				EU, PRC
Wind turbine foundation monopile/transition piece		PRC	EU	
Wind turbine foundation jacket	PRC	EU		
Onshore sub-station/booster station			PRC	EU
Offshore sub-station/booster station		PRC	EU	
Offshore sub-station foundation		PRC		EU
Export cables	PRC			EU
Array/infield cables		PRC		EU
Supply chain #III – Installation and commissioning				
Onshore sub-station/booster station			PRC	EU
Offshore sub-station/booster station	PRC	EU		
Export cables	PRC	EU		
Array/infield cables		PRC	EU	
Wind turbine/offshore sub-station foundations		PRC	EU	
Wind turbine generator		PRC	EU	

Logistics readiness: O&M

	0	1	2	3				
Supply chain #IV – Preventive operations & maintenance								
Preventive/planned (wind turbine generator)		PRC	EU					
Return flow (reverse supply chain)		PRC	EU					
Supply chain #V - Unscheduled maintenance								
Unscheduled/Break-down (wind turbine generator)	PRC	EU						
Supply chain #VI – Contingency maintenance								
Contingency (entire offshore wind farm)	PRC	EU						

Supply chain readiness views

- shipping and logistics focus

Group #1

Geographies

Shipping and logistics in Europe/Asia/Americas

Group #2

Life-cycles

Shipping and logistics D&C/I&C/O&M/De-comms

Group #3

Wind energy components

WTGs, foundations, sub-stations, cables

Group #4

Supply and demand

Competitive situation shipping and logistics firms

4 groups

Please nominate:

- Captain
- Time-keeper
- White board note taker
- Presenter

Please be ready to:

- Recap the question
- Provide your answer
- Explain your discussions
- Review your findings on the flip-chart
- Answer questions from the group

The groups

#1 Christina, Mads, Per, Hans

Geographies

#2 <u>David</u>, Johan, Barry, Helle, Anders

Life-cycles

#3 <u>Jesper</u>, Henrik, Preben, Christian, Jens

Components

#4 <u>Lars</u>, Thomas (DSA), Hans Ove, Morten, Sebastian

Supply/demand

Please be back at...

14:50 PM

With a coffee!

Today's program

12:00-12:45 **Working lunch**

12:45-14:15 **Meeting part I**

14:15-15:50 Coffee and meeting (II)

15:50-16:00 Ready for "gå-hjem"

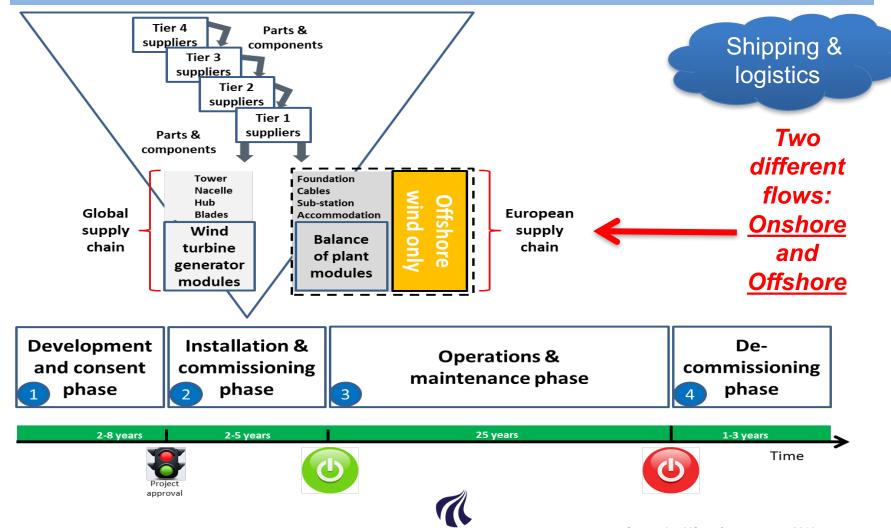
16:00-18:00 "Gå-hjem" meeting

Presentation of group results

Presentations

Flip-chart presentations from the 4 groups

Scoping from first meetings


Charter

The Reference Group will:

- Remain in active existence throughout the life-span of the research project
- Convene twice per year
- Meetings at member organization venues
- Actively partake in the research project
- <u>Facilitate</u> the research project internally in member organizations, and externally
- Support the on-going research efforts

End-to-end life-cycle focus

AALBORG UNIVERSITY

DENMARK

Shipping, logistics, SCM, end-to-end: What does it really mean?

Conclusion:

"The inbound to manufacturing assembly supply chain consists of "standard transportation" mainly by ocean and some air. This part of the end-to-end supply chain was therefore considered less interesting for the project to review than installation & commissioning, operations & maintenance, and decommissioning"

Theory / Practice linkage	Support / Lobby	Challenges /Solutions	
Learn biz	Convey info	Practical and relevant / correct	
Chinese market network sharing	Investments going forward (vessels, financing, etc.)	Practical background → tools	
Reducing LCoE	Project timelines	Academia vs. consulting	
Applied research	Offshore wind knowledge	Capture change	
Good quality research	Case studies	Look at change in future	
Scope: Narrow, realistic, big, complex, crystalize, etc.	Continuous "smart" goals: Concrete, specific, look ahead, value	Moving research target (in time)	
On-time project	E2E wind supply chain	Bridge more industries	

46

Case study efforts

Number of companies

Time spent

Extent of case study scope

Depth

Width

Europe

Offshore, simple and easy cases

Asia

Offshore, one case

Onhore, rail focus

Wind energy shipping and logistics: Involved parties...

Freight forwarders:

- Global
- Regional
 - Local

Ocean transportation and related:

- RO/RO ("Roll-on/Roll-off")
 - LoLo ("Lift-on/Lift-off")
- Short-sea/regional operators
- Tug/barges and landing crafts ("LCTs")
- Multi-purpose vessels ("MPV")/Floating cranes
 - Container vessel operators
- Safety vessels, work boats, and crew/hotel vessels
- Special vessels like offshore wind turbine installation and cable laying vessels

Ports

Storage:

- Warehouses
- Yards
- Storage areas

Rail

Specialty trucks

Land based cranes

Utilities

Operators

OEM's

EPC companies

Extent of services

Definition of "The blue Denmark"



AALBORG UNIVERSITY

DENMARK

- SHIPPING & LOGISTICS

Onshore and offshore SCM

Onshore and offshore wind – Differences and similarities

Conclusion:

"Whereas both similarities and differences exist between the onshore and offshore wind farm supply chains, the offshore wind supply chain is more complex in terms of shipping and logistics"

Similarities	Differences		
Inland: - Same trucks / Equipment - Daytime - Infrastructure	Sea carriage: - Assembly to site (outbound)		
Port storage: - Temp. storage	Infrastructure: - Quayside loading / logistics - Diff. equipment (vertical) - Area / space (buffer) - Seamen education (outbound) - BOP - Installation / equipment / skills		
Actual maintenance	Maintenance - Certificates - Transportation - Equipment		

Scoping of the Ph.d. research

First Reference Group meeting scoping conclusion:

Wind energy supply chains								
	Development &					De-commissioning		
Wind farm pha	ase Consent (D&C)	Installation & Commissioning (I&C)		Operations & Maintenance (O&M)		(De-comm)		
Supply chair	D&C chain	I&C chain - Inbound	I&C chain - Outbound	O&M - Preventive	O&M - Breakdown	De-comm chain		
Description	Site surveys, birds, wildlife, sea, seabed	Inbound assembly parts and components	Outbound wind modules for wind farm site	Personnel, parts, and components	Personnel, parts, components, and modules	Restoration of site for new wind farm or to original condition		
Characteristi	Specialized vehicles (onshore) and vessels (offshore)	Mainly a homogenous flow using ocean containers and air; some project cargo	Project cargo/break- bulk	Mainly service boats, crew transfer vessels and some larger vessels	Service boats and helicopters, some large vessels like MPV, tug&barge, WTIV	Project cargo/break- bulk		

Assumed to have the largest possible impact on potential reductions of levelized cost of energy

Achievements since last meeting

Speed boats – USA onshore

Rail logistics focus:

- Continuation of execution of plan to conduct study visits
- Site visits to Canada and the US
- Rail focus in Dallas and Corpus Christi
- Large-scale onshore wind farm visits conducted
- Project partners include BNSF, Algoma, and Vestas

Speed boats - INNOlog

OEDK CRIF Group 3 I&C logistics:

- ➤Innovative logistics solutions
- ➤ Project now advanced to WP5 of 7
- ➤ December 8, 2016 Esbjerg WP4 conference
- >Literature review analysis presentation
- ➤ Project lead for "installation vessel cost drivers" work group on behalf of OEDK

Speed boats: Logistics test center

Bornholm nearshore wind farm:

- ➤EIA completed
- ➤ Site not selected for auction
- Possible attempt to find local funding
- ➤ Offshore logistics test centre concept part of Megavind test center project
- ➤ Collaboration Rønne Havn and Offshore Center Bornholm offshore wind cluster

Government relations - and tailormade grants

EU Commission lobbying

March 2015 Reference Group success:

 H2020 grant LCE 13 and LCE 14 meetings with EU Commission officials during March, 2015 in Brussels and CPH

 2018-2020 program of H2020 also includes very relevant grants (RES9 and RES10), lobbying on-going now

EU future research agenda

- Former EU research umbrella TPwind now replaced by ETIP Wind:
 - ➤ European Technology and Innovation Platform on Wind Energy
 - ➤ Only AAU representative for expert interviews in April June time frame
 - Strategic Research and Innovation Agenda 2016 report was published on September 27, 2016

Papers – policy level impact?

Three latest papers:

- DEWP case study
 - Logistics costs to be included and considered
- O&M paper
 - Standardize LCoE calculation methods or use another tool
- Comparative cross-case study
 - China/EU policy level recommendations: EU needs 2030 goals and China needs collaboration with EU firms

Dissemination of research results and findings

Concurrent dissemination

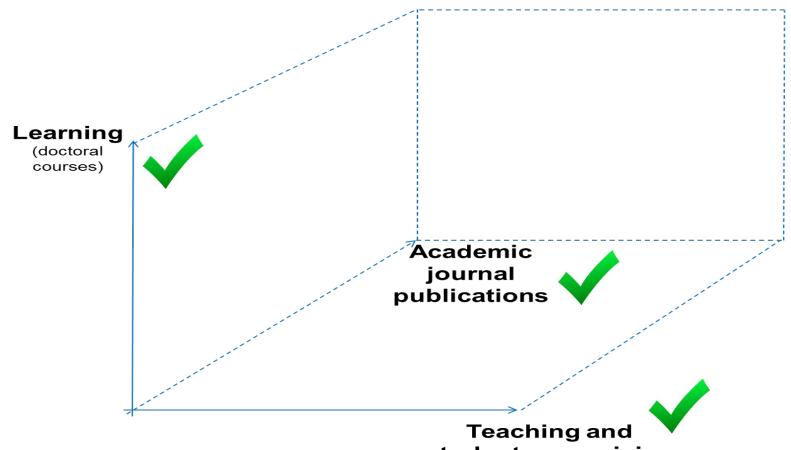
<u>Academic</u>

- Journal papers:
 - Paper on supply chain readiness published
 - Paper on O&M logistics published
- Press clippings
 - Last gå-hjem meeting at DSA
 - Innovation dialogue facilitated by DEWP

<u>Industry</u>

- Gå-hjem meeting on August 24, 2016 in Copenhagen
 - Almost 60 people attended
- INNOlog conference on December 8, 2016
 - Almost 80 people attended

Academic update



Tiered research questions

Strategies & business models with RQ3 focus on M&A to attain leadership position Constituencies within shipping/logistics/SCM RQ2 Strategic role of shipping/logistics/SCM and share of LCoE Supply chain configuration RQ1 Wind energy technology and market

Academic project KPIs

student supervision

The academic currency: Papers

Subsidized market, government created, derived market of logistics, M&A

Peer reviewed book chapter published by Pearson, 2015

Cross-case study and supply chain readiness comparison Asia / Europe

Published, Renewable & Sustainable Energy Reviews, 2017

Case #1:

DONG Energy Wind Power offshore wind logistics innovation, LCoE, and organization

Published, Energies, 2016

Case #2:

Offshoreenergy.dk
"Cost Reduction Forum"

Manuscript on Group 4 O&M
logistics and LCoE calculations
Published, Energies, 2017

Case #3:

5.7)

The theoretical contribution! (Section

Published International Journal

China offshore wind
Gap analysis as of end 2015
Focus on shipping/logistics
Manuscript drafting
work-in-progress

Life-cycle case study "test" - Anholt OWF

Second peer reviewed conference paper resentation EAWE, 2013

Life-cycles, exploratory, and industry practitioner challenges
Initial peer reviewed conference paper presentation LogMS, 2013

Doctoral dissertation

- Work in progress
 - ✓ Method applied
 - √ Case studies utilized
 - √Summary of analysis
 - ✓ Discussion across papers
 - √ Conclusion

Wrap-up and close

Closing of today

- Date for next meeting
- Hosting company
- City

✓Wrap-up

Next Reference Group meeting

Date suggestion: September 27, 2017

DTU Department of Wind Energy Risø, Roskilde

Final conference: November 16, 2017

Today's program

12:00-12:45 **Working lunch**

12:45-14:00 **Meeting part I**

14:00-15:50 Coffee and meeting (II)

15:50-16:00 Ready for "gå-hjem"

16:00-18:00 "Gå-hjem" meeting

Transfer to gå-hjem

Now let us get ready for the gå-hjem meeting / "go-home" after work meeting

HERE AND NEXT DOOR

